PROPIOXATINS A AND B, NEW ENKEPHALINASE B INHIBITORS

II. STRUCTURAL ELUCIDATION

YOSHINORI INAOKA, SHUJI TAKAHASHI[†] and TAKESHI KINOSHITA^{††}

Bio-Science Research Laboratories, 'Fermentation Research Laboratories and ^{††}Analytical and Metabolic Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140, Japan

(Received for publication May 1, 1986)

The structures of propioxatins A ($C_{17}H_{20}N_3O_6$) and B ($C_{18}H_{31}N_3O_6$), new enkephalinase B inhibitors produced by *Kitasatosporia setae* SANK 60684, were determined. Both propioxatins consist of *N*-acyl-L-prolyl-L-valine. *N*-Acyl moieties of propioxatins A and B were α -propyl and α -isobutyl succinic acid β -hydroxamic acid, respectively.

In a preceding paper¹⁾, we reported on the taxonomy of the producing organism, isolation, characterization and biochemical properties of propioxatins A and B. The producing organism was identified as *Kitasatosporia setae* SANK 60684 and the inhibitors were characterized as *N*-acyl dipeptides containing a hydroxamic acid moiety. In the present paper, the structural determination of propioxatins A and B is described.

Propioxatins A (1), mp 106~110°C, and B (2), mp 84~90°C, are water soluble substances which have only end absorption in the UV region. The molecular weights of 1 and 2 were determined by FAB-MS as 372 (M+H)⁺ and 386 (M+H)⁺, respectively, and the molecular formula of the trimethyl derivatives (3) from 1 and (4) from 2 obtained by treatment with diazomethane were assigned by high resolution mass spectrometry at m/z 413.2530 (calcd for $C_{20}H_{35}N_3O_6$: 413.2525) and m/z 427.2684 (calcd for $C_{21}H_{37}N_3O_6$: 427.2682), respectively. The molecular formulas of 1 and 2 were established as $C_{17}H_{20}N_3O_6$ and $C_{18}H_{31}N_3O_6$ from elementary analysis, mass and ¹³C NMR spectral data.

Hydrolysis of 1 and 2 with $12 \times HCl - CH_3COOH$ (1:1) at $105^{\circ}C$ for 18 hours gave 1 mol each of proline and valine. No N-terminal amino acids were detected by Edman degradation. The high resolution mass spectra of 3 and 4 contained the same peak at m/z 227.1453 originating from $C_{11}H_{19}N_2O_3$. This fragment ion supported the presence of a dipeptide of prolyl-value methyl ester or valyl-proline methyl ester, respectively. However, valine was detected as a C-terminal amino acid by hydrolysis with carboxypeptidase Y of 1 and 2. In addition, a dipeptide (5) identical with prolylvaline, was obtained by mild hydrolysis with water at 60°C for 5 hours. These results suggested that the dipeptide, prolyl-valine, was present in both compounds and only the N-acyl groups were different in 1 and 2. Hydrolysis of 1 with $12 \times \text{HCl} - \text{CH}_{3}\text{COOH}$ (1:1) at 105°C for 24 hours followed by treatment with diazomethane afforded a dimethyl ester (6), $C_9H_{16}O_4$, m/z 189 (M+H)⁺. This compound was identical with α -propylsuccinic acid dimethyl ester which was prepared by reaction of α -bromo-*n*-valeric acid dimethyl ester with malonic acid diethyl ester, then decarboxylation by reflux with HCl for 3 hours and esterification with diazomethane. Mild hydrolysis of 1 as above and neutralization with NaOH gave the sodium salt (7) $C_7H_{10}O_3NNa_2$, FAB-MS: QM⁺=202, together with the dipeptide (5). The ¹H NMR and FAB-MS spectra of 7 were very similar to N-hydroxy- α -propylsuccinimide. From the above results, the structure of N-acyl of 1 was deduced to be α -propylsuccinic

CH2COOCH3

CH3CH2CH2CHCOOCH3

Compound 6

CH3CH2CH2CHCH2COOH

Compound 7b

283

HCC

ONHOH

CH3

юснсоосн_з

227

Fig. 1.

186

(H_a, dd, J_1 =16.0 Hz, J_2 =3.2 Hz) and 2.88 (H_b, dd, J_1 =16.0 Hz, J_2 =10.0 Hz). These changes were attributed to the methylation of the hydroxamic acid. The mass spectrum of **3** showed the molecular ion at m/z 413 and fragment ions at m/z 367 (M-46, -NHOCH₃), 311 (M-C₄H₈NO₂), 283 (C₁₄H₂₃N₂O₄), 227 (as mentioned above), 186 (base peak, M-227) and 158 (base peak, M-227-CO). These data supported the sequence (7a)-proline-valine. The structure of propioxatin A was thus deduced as **1a**.

N-Acyl moiety (8) of propioxatin B was also obtained by mild hydrolysis similarly as in the case of 1. The ¹N HMR spectrum of 8 was similar to that of 7 except for the presence of an isobutyl group instead of the propyl group. Comparing the molecular formula, ¹H NMR and ¹³C NMR spectra of 2 with that of 1, the structure of propioxatin B was determined as structure 2.

The configurations of proline and valine in 1 and 2 were assigned on the basis of enzyme reactions and HPLC of *N*-carboxy-L-leucyl derivatives²⁾. In the reactions of proline and valine with L- and D-amino acid oxidase, proline and valine were found to disappear only from the former reaction mixture and not from the latter when examined by an amino acid analyzer. Also, in a comparison of the retention times of authentic *N*-carboxy-L-leucyl derivatives of L- and D-proline and valine, the L forms

THE JOURNAL OF ANTIBIOTICS

were faster than the D forms and the retention times of N-carboxy-L-leucyl derivatives of proline and valine in 1 were identical with that of the L-amino acids. The absolute configuration of N-acyl moiety, α -propylsuccinic acid monohydroxamic acid (7) was established to be R from X-ray analysis of synthetic propioxatin A di-O-benzyl derivative. Furthermore, the structure and stereochemistry of 1 were confirmed by its stereo-specific synthesis discussed in a subsequent paper.

Experimental

The amino acid analysis was carried out with a Hitachi 835 amino acid analyzer. UV spectra were measured on a Hitachi 320 spectrophotometer. NMR spectra were recorded on a Jeol GX-400 spectrometer using TMS as an internal standard. All mass spectral data were determined on a Jeol JMS-HX 100 spectrometer. Melting points are uncorrected. YMC pack was obtained from Yamamura Chemical Laboratories Co., Ltd. (Kyoto, Japan).

Treatment of Propioxatin A (1) with Diazomethane

A stirred solution of 100 mg of propioxatin A (1) in 10 ml of MeOH was treated in an ice-bath with excess diazomethane in ether overnight. After evaporation of the solvent, the residue was chromatographed on Sephadex LH-20 (200 ml) developed with $CHCl_3$ - EtOAc (1 : 1). The trimethyl ester (3) was obtained as an oily substance.

Hydrolysis of Propioxatins A (1) and B

A solution of 1 mg of propioxatin A (1) in 0.5 ml of $12 \times \text{HCl} - \text{CH}_3\text{COOH}$ (1:1) was heated at 105°C for 18 hours in a sealed tube. The solvent was removed under reduced pressure. The amino acid analysis of the hydrolysate gave 1 mol each of proline and value.

Hydrolysis of 1 with Carboxypeptidase Y

A solution of 1 mg of 1 in 1 ml of 50 mM sodium phosphate buffer, pH 6.5, was treated with carboxypeptidase Y at 37° C for 4 hours. Only valine was detected by amino acid analysis.

Mild Hydrolysis of 1 with H₂O

A solution of 5.8 mg of 1 in H_2O (1 ml) was heated at 60°C for 5 hours. After lyophilization, the crude powder was chromatographed on Sephadex G-10 (100 ml) and developed with the upper layer of BuOH - CH₃COOH - H₂O (4:1:5); 2 mg of the dipeptide (5) was secured from the ninhydrin positive fractions.

Isolation of α -Propylsuccinic Acid Dimethyl Ester (6)

Hydrolysis of 10 mg of 1 with 12 N HCl - CH₃COOH (1:1) was carried out by heating at 105° C for 24 hours. The hydrolysate was dissolved in 1 ml of MeOH and treated with diazomethane in ether. After evaporation of the solvent, the residue was determined by GC-MS as a propylsuccinic acid dimethyl ester.

Synthesis of α -Propylsuccinic Acid

To a stirred solution of 140 ml of EtOH containing 1.7 g of metal sodium, a solution of 11 g of malonic acid diethyl ester in 10 ml of EtOH was added dropwise at room temp. After stirring for 30 minutes, a solution of 12.1 g of α -bromo-*n*-valeric acid methyl ester in 10 ml of EtOH was added. The reaction mixture was stirred at room temp for 1 hour and then refluxed for 1.5 hours. After addition of H₂O and neutralization with HCl, the solution was concd to a small volume. The residue was acidified with HCl and extracted with EtOAc. The solvent layer was dried with Na₂SO₄, and evaporated to dryness, yielding 19 g of tricarboxylic acid ester. A solution of 19 g of the tri-ester in 200 ml of 10% NaOH of EtOH - H₂O (1:1) was refluxed for 2 hours. After removal of EtOH under reduced pressure, the residue was acidified with HCl and extracted to dryness. The residue (10 g) was dissolved in 350 ml of 5% HCl solution and refluxed for 6 hours, when NaCl was added and the mixture extracted with EtOAc to yield α -propylsuccinic acid (5.5 g), mp 92~93°C.

VOL. XXXIX NO. 10 THE JOURNAL OF ANTIBIOTICS

Isolation of α -Propylsuccinic Acid Monohydroxamic Acid (7)

Mild hydrolysis of 10 mg of 1 with H_2O was carried out as described above. From the hydrolysate 3 mg of the title compound (7) was obtained by HPLC (YMC pack, ODS, 15% CH₃CN - 0.2% TFA).

Oxidation of Proline and Valine in 1 and 2 with D- and L-Amino Acid Oxidase

Treatment of 1 or 2 (1.4 mg in 1 ml of 50 mM sodium phosphate buffer, pH 6.5) with carboxypeptidase Y followed by mild hydrolysis at 80°C for 4 hours released proline and valine. A 50 μ l of this mixture was added into 450 μ l of 0.1 M sodium phosphate buffer, pH 8.0, containing 0.1 unit of L- or D-amino acid oxidase and stirred at 37°C for 24 hours. Both proline and valine disappeared only when L-amino acid oxidase was used.

References

- INAOKA, Y.; H. TAMAOKI, S. TAKAHASHI, R. ENOKITA & T. OKAZAKI: Propioxatins A and B, new enkephalinase B inhibitors. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiotics 39: 1368~1377, 1986
- TAKAYA, T.; Y. KISHIDA & S. SAKAKIBARA: Determination of the optical purity of amino acids by highperformance liquid chromatography. J. Chromatogr. 215: 279~287, 1981